New Synthetic Technology for the Stereocontrolled Construction of 1,1'-Disaccharides and 1,1':1",2-Trisaccharides. Synthesis of the FG Ring System of Everninomicin 13,384-1

K. C. Nicolaou,* F. L. van Delft, S. R. Conley, H. J. Mitchell, Z. Jin, and R. M. Rodríguez

> Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, California 92037 Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093

Received May 15, 1997

With its imposing molecular structure, everninomicin 13,384-1 (1, Figure 1) poses considerable challenge to the synthetic chemist. Isolated¹ from *Micromonospora carbonacea* var. africana (collected from the banks of the Nyiro river in Kenya), this antibiotic shows promising antibacterial properties against drug-resistant pathogens (e.g., methicillin-resistant Staphylococci and vancomycin-resistant Streptococci and Entero- $(cocci)^2$ and, therefore, constitutes a unique opportunity for discovery and invention in the areas of chemical synthesis, biology, and medicine. Among its challenging features³ are the 1,1'-disaccharide bridge, linking carbohydrate units F and G (see shaded area in Figure 1), its two orthoester frameworks, and its nitro sugar moiety. In this Communication we report new synthetic technology for the stereoselective construction of 1,1'-disaccharides⁴ and 1,1':1",2-trisaccharides, and its application to the synthesis of the FG ring system (compound 2, Scheme 3) of everninomicin 13,384-1 (1).

As expected^{4i,j,1-p}, the reaction of carbohydrate acceptor **3** (R = Bn, Scheme 1) with trichloroacetimidate donor **4** in the presence of TMSOTf led to the disaccharide **5** (87% yield) with the 1α , 1' α -stereochemistry. This result calls attention to the problem of simultaneously controlling the stereochemistry at two anomeric centers while forming the glycosidic linkage of

(3) (a) Weinstein, M. J.; Luedemann, M. J.; Oden, E. M.; Wagman, G. H. Antimicrob. Agents Chemother. 1965, 1964, 24–32. (b) Wright, D. E. Tetrahedron 1979, 35, 1207–1237. (c) Ganguly, A. K. In Topics in Antibiotic Chemistry; Sammes, P. G., Ed.; John Wiley & Sons: New York, 1978; Vol. 2, Part B.

(4) (a) Lemieux, R. U.; Morgan, A. R. Can. J. Chem. 1965, 43, 2190–2198. (b) Chittenden, G. J. F. Carbohydr. Res. 1969, 9, 323–326. (c) Micheel, F.; Pick, E.-D. Tetrahedron Lett. 1969, 1695–1696. (d) Klemer, A.; Buhe, E.; Kutz, R.; Chahin, S.; Kleefeldt, L. Liebigs Ann. Chem. 1970, 739, 185–193. (e) Birkofer, L.; Hammes, B. Liebigs Ann. Chem. 1973, 731–739. (f) Helferich, B.; Müller, W. M.; Karbach, S. Liebigs Ann. Chem. 1974, 1514–1521. (g) Bar-Guilloux, E.; Defaye, J.; Driguez, H.; Robic, D. Carbohydr. Res. 1975, 45, 217–236. (h) Koto, S.; Morishima, N.; Zen, S. Chem. Lett. 1976, 61–64. (i) Pavia, A. A.; Rocheville, J.-M.; Ung, S. N. Carbohydr. Res. 1980, 79, 79–89. (j) Koto, S.; Inada, S.; Zen, S. Bull. Chem. Soc. Jpn. 1981, 54, 2728–2734. (k) Cook, S. J.; Khan, R.; Brown, J. M. J. Carbohydr. Res. 1988, 3, 343–348. (l) Oláh, V. A.; Harangi, J.; Lipták, A. Carbohydr. Res. 1988, 174, 113–120. (m) Nishizawa, M.; Komada, S.; Yamane, Y.; Kayano, K.; Hatakeyama, S.; Yamada, H. Chem. Pharm. Bull. 1994, 42, 982–984. (n) Nishizawa, M.; Garcia, D. M.; Noguchi, Y.; Komatsu, K.; Hatakeyama, S.; Yamada, H. Chem. Pharm. Bull. 1994, 42, 2400–2402. (o) Ronnow, T. E. C. L.; Meldal, M.; Bock, K. J. Carbohydr. Chem. 1995, 14, 197–211. (q) Posner, G.; Bull, D. S. Tetrahedron Lett. 196, 37, 6279–6282. (r) Hiruma, K.; Kajimoto, T.; Weitz-Schmidt, G.; Ollmann, I.; Wong, C.-H. J. Am. Chem. Soc. 1996, 118, 9265–9270.

Scheme 1. Stereoselective Construction of 1,1'-Disaccharides **5** and 7^a

Scheme 2. Stereocontrolled Construction of 1,1';1",2-Trisaccharide **9**

the FG ring system of everninomicin 13,384-1 (see shaded area in Figure 1 and compound **2**, Scheme 3). Compounding the challenge, one of the sugars is linked in a β -mannoside fashion. To circumvent this problem, the C-2 hydroxyl group in **3** (R = H) was utilized to fix the anomeric oxygen in the desired β -configuration via a five-membered ring stannane⁵ (e.g., compound **6**, Scheme 1). Subsequent reaction with trichloroacetimidate **4** in the presence of TMSOTf resulted in the stereoselective formation of the 1β ,1' α -disaccharide **7** (66% yield) with no trace of 1α ,1' α -linked stereoisomer. More impressively, reaction of the corresponding glycosyl fluoride **8** (see Scheme 2 and Table 1) in excess (2.2 equiv) with stannane **6** led to trisaccharide **9** (84% yield), in which all three glycosidic bonds were formed stereoselectively.⁶

The generality of these glycosidation reactions was explored and selected results are shown in Table 1.⁷ It was found that (a) both disaccharides and trisaccharides can be formed in stereocontrolled fashion, (b) trichloroacetimidate donors lead to good yields of disaccharides under the proper stoichiometry (entries 1, 5, 9, 13, and 15), and (c) glycosyl fluorides used in excess favor trisaccharide formation (entries 4, 8, 12, and 18).⁸

The application of the present technology to the stereocontrolled synthesis of FG ring system 2 of everninomicin

⁽¹⁾ Ganguly, A. K.; Pramanik, B.; Chan, T. C.; Sarre, O.; Liu, Y.-T.; Morton, J.; Girijavallabhan, V. M. *Heterocycles* **1989**, *28*, 83–88.

^{(2) (}a) Ganguly, A. K.; Girijavallabhan, V. M.; Sarre, O. International Patent WO 87/02366, 1987. (b) Patel, M.; Gullo, V. P.; Hare, R.; Loebenberg, D.; Morton J. B.; Miller, G. H.; Kwon, H. Y. Eur. Pat. Appl. 92309368.6, 1993. (c) Waitz, J. A.; Patel, M. G.; Marquez, J. A.; Kalyanpur, M. G.; Horan, A. C. In 19 pp. Cont.-in-part of U.S. Ser. No. 405,822 (1986); Patent number 4,597,968.

^{(5) (}a) Srivastava, V. K.; Schuerch, C. Tetrahedron Lett. 1979, 3269–3272.
(b) El Ashry, E. S. H.; Schuerch, C. Carbohydr. Res. 1982, 105, 33–43.
(c) Su, T.-L.; Klein, R. S.; Fox, J. J. J. Org. Chem. 1982, 47, 1506–1509.
(d) Dessinges, A.; Olesker, A.; Lukacs, G.; Thang, T. T. Carbohydr. Res. 1984, 126, C6–C8.
(e) Hodosi, G.; Kovác, P. J. Am. Chem. Soc. 1997, 119, 2335–2336.

^{(6) (}a) Augé, C.; Veyrières, A. J. Chem. Soc., Perkin Trans. 1 1979, 1825–1832. (b) Cruzado, C.; Bernabe, M.; Martin-Lomas, M. Carbohydr. Res. 1990, 203, 296–301. (c) Garegg, P. J.; Maloisel, J.-L.; Oscarson, S. Synthesis 1995, 409–414.

⁽⁷⁾ Coupling of tin acetal **6** with a variety of other donors and conditions (e.g., thioglycosides/DMTST, 6c glycophosphates/TMSOTf) was also investigated but gave inferior yields. Moreover, fully acetylated imidates and fluorides were found to be inert under the applied reaction conditions.

⁽⁸⁾ As expected, TMSOTf-induced coupling of imidate **4** with the tin acetal derived from 3,4,6-tri-*O*-benzyl-D-glucopyranose afforded a mixture of products consisting primarily of the corresponding 1α , $1'\alpha$ -disaccharide and the 2-*O*-substituted disaccharide in ca. 1:2 ratio.

Figure 1. Structure of everninomicin 13,384-1. Rings F and G are shaded.

Table 1. Synthesis of β -Linked 1,1'-Disaccharides and 1,1';1",2-Trisaccharides^a

Entry	Acceptor	Donor	Solvent ^b	TMSOT	Time	Disaccharide (% Yield) ^d Trisaccharide (%	Yield)
	(equiv)			(equiv) ^c	(h)		
1	6 (1.5)	NH II 4: X=OCCCI₃	A	0.5	35	7 (66) Bno Aco	9(9)
2	6 (0.45)		Α	0.5	72	$B_{n0} \rightarrow 0 \rightarrow 0$, $2 \rightarrow 0$ $7(-)$ $B_{n0} \rightarrow 0 \rightarrow 0$	9(-)
3	6 (1.5)	BnO ^{rr} OAc BnO 8: X=F	Α	1.1	24		9 (70)
4	6 (0.45)	"	A	0.6	24	Bho OBn 7(-)	9 (84)
		NH				Bno ^{°OBn}	
5	6 (1.5)	10: X=OČCCI	3 A	0.4	48		12 (-)
6	6 (0.45)	Bno , , , , , , , , , , , , , , , , , , ,	Α	0.3	96	$BnO \uparrow O \uparrow O \uparrow O \uparrow O O O O O O O O O O O O$	12 (47)
7	6 (1.5)	BnO 13: X=F	А	1.2	48	$BnO'' \longrightarrow OH \longrightarrow OBn 11 (64) BnO'' \longrightarrow OBn BnO BnO'' \longrightarrow OBn BnO''' \longrightarrow OBn BnO'' \ OBn BnO''' \longrightarrow OBn BnO''' \ OBn BnO''''''' \ OBn BnO''''''''''''''''''''''''''''''''$	12 (-)
8	6 (0.45)	*	Α	0.5	72	⁵ OBn 11 (23)	12 (32)
		NH				Aco OBn	
9	6 (1.5)	14: X=0CCC	I ₃ В	0.8	72		16 (22)
10	6 (0.45)		В	0.3	72	$BnO \uparrow O \uparrow O \uparrow O \uparrow O \downarrow O O \downarrow O O O O O O O $	16 (14)
11	6 (1.5)	Ph ^ O` 丫 `OAc AcÔ 17: X=F	в	1.2	0.5	$\begin{array}{c} BnO^{\circ} \uparrow \bullet OH \left(\begin{array}{c} \uparrow \circ \\ O \uparrow \\ BnO \end{array} \right) = \begin{array}{c} 15 (59) \\ BnO \end{array} \xrightarrow{BnO^{\circ}} \uparrow \bullet O \uparrow \\ BnO \end{array} \xrightarrow{\uparrow} OAc$	16 (5)
12	6 (0.45)	и	В	0.5	48	۲۰۰۰ 15(-) ۲۰۰۲ ۲۰۰۲ ۲۰۰۲	16 (33)
		ŊН				AcO AcO OBn	
13	6 (1.5)		3 A	0.5	0.5	$B_{\rm B0} \sim 0 \sim 0 \sim 0^{-1} \sim 0^{\rm Bn} 19 (72)$	20 (8)
14	6 (1.5)	Bn0 OAc 21: X=F	A	1.1	0.5	впо" (ОН ⁰ - ОВп 19 (70) Впо (ОС Асо	20 (12)
	Me., _00,	,n-Bu				BnO BnO 1 O	
	BnO V. o	Sn n-Bu				BnQ	
15	BnÔ 22 (1 5)		. в	0.5	40	AcO., AcO., OBn	24 (-)
16	22 (0 AE)		, D в	0.5	72	$Me_{h_{2}}O_{h_{2}}$	
10	22 (0.45)			1.1			
17	22 (1.5)	13: X=F	в	1.1	2	BnO OBn BnO OF OBn	24 (9)
18	22 (0.45)	n	В	0.5	48	23 (7)	24 (11)

^aAll reactions were started at 0 °C and then allowed to proceed at ambient temperature for the indicated time. ^bSolvent system A=ether; B=ether:CH₂Cl₂, 3:1. ^cBased on donor. ^dCombined yield of disaccharide and its TMS derivative; removal of the TMS group was effected with PPTS in MeOH.

Scheme 3. Stereocontrolled Synthesis of FG Ring System 2 of Everninomicin $13,384-1^a$

^{*a*} PMB = p-MeO-C₆H₄CH₂. Rings F and G are shaded.

13,384-1 (1) is shown in Scheme 3. Thus, conversion of the F-carbohydrate unit 25^9 to its di-*n*-butylstannyl derivative 26 under standard conditions, followed by reaction with 0.7 equiv of ring G trichloroacetimidate donor 27^9 in the presence of TMSOTf, furnished the desired 1β ,1' α -disacccharide 2 in 67% yield as a single stereoisomer. The stereochemistry of the glycosidic linkages of compounds 5, 7, 9, and 2 was assigned on the basis of the anomeric ${}^{13}C{}^{-1}H$ spin-coupling constants, 4m,10 measuring 174.1, 156.9, 151.2, and 159.1 Hz, respectively. Proof

of anomeric configuration of the remaining substrates was found in the chemical shift of the mannose H-5 proton, typically appearing at $\delta \sim 3.4$ ppm for the β -linked glycoside.

The described chemistry is expected to find application in synthetic carbohydrate chemistry and facilitate a projected total synthesis of everninomicin 13,384-1 (1) and its congeners.¹¹

Acknowledgment. We thank Dr. Dee H. Huang and Dr. Gary Siuzdak for NMR and mass spectroscopic assistance, respectively. This work was financially supported by the National Institutes of Health USA, The Skaggs Institute for Chemical Biology, fellowships from the Netherlands Organization for Scientific Research (NWO) (to F.L.v.D.), the National Science Foundation (to S.R.C.), and the National Institutes of Health USA (to Z.J.), and grants from Schering Plough, Amgen, Hoffmann LaRoche, Merck, DuPont Merck, and Pfizer.

Supporting Information Available: Procedures for the preparation of the disaccharides and trisaccharides, schemes for the synthesis of compounds 25 and 27, and a listing of selected data for compounds 2, 5, 7, 9, 11, 12, 13 α , 13 β , 15, 16, 18 α , 18 β , 19, 20, 23–25, 27, and 28 (21 pages). See any current masthead page for ordering and Internet access instructions.

JA971574F

⁽¹⁰⁾ Podlasek, C. A.; Wu, J.; Stripe, W. A.; Bondo, P. B.; Serianni, A. S. J. Am. Chem. Soc. **1995**, 117, 8635–8644.

⁽¹¹⁾ All new compounds exhibited satisfactory spectral and exact mass data.

⁽⁹⁾ For the preparation of this intermediate, see Supporting Information.